login
A085458
a(n) = 4*Sum_{i=0..n-1} C(2*i+1, i)*C(n-1, n-1-i)*(-1)^(n-1-i)*2^i for n > 0, a(0) = 1.
2
1, 4, 20, 116, 708, 4452, 28532, 185300, 1215268, 8030404, 53381844, 356577588, 2391430020, 16092704292, 108605848116, 734783381652, 4982063186916, 33844621986180, 230306722637204, 1569571734301172, 10711405584991300
OFFSET
0,2
LINKS
Andrei Asinowski, Cyril Banderier and Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020-2021; Discrete Mathematics & Theoretical Computer Science, April 30, 2021, vol. 22 no. 2. Formula 25.
FORMULA
G.f.: sqrt((1 + x)/(1 - 7*x)).
7^n = Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*a(j)*a(i-j).
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) + 7*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 2*sqrt(2)*7^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
MATHEMATICA
CoefficientList[Series[Sqrt[(1 + x)/(1 - 7x)], {x, 0, 25}], x]
PROG
(PARI) x='x+O('x^66); Vec(sqrt((1+x)/(1-7*x))) \\ Joerg Arndt, May 10 2013
CROSSREFS
Cf. A085456 (signed version).
Sequence in context: A231539 A106567 A077445 * A085456 A120915 A165311
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jul 02 2003
STATUS
approved