login
A085457
Sum_{i=0..n} Sum_{j=0..i} a(j) * a(i-j) = (-11)^n.
2
1, -6, 48, -438, 4206, -41586, 418980, -4277130, 44089320, -457891170, 4783741248, -50218890738, 529300238574, -5597562756894, 59366869030668, -631200956847558, 6725615443683870, -71800018913609970, 767806202604650880, -8223081959016322530, 88187484604146004506
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x)=Sqrt((1-x)/(1+11x)).
From Seiichi Manyama, Feb 03 2023: (Start)
a(n) = Sum_{k=0..n} (-3)^k * binomial(n-1,n-k) * binomial(2*k,k).
n*a(n) = -2*(5*n-2)*a(n-1) + 11*(n-2)*a(n-2). (End)
MATHEMATICA
CoefficientList[Series[Sqrt[(1-x)/(1+11 x)], {x, 0, 20}], x]
PROG
(PARI) a(n) = sum(k=0, n, (-3)^k*binomial(n-1, n-k)*binomial(2*k, k)); \\ Seiichi Manyama, Feb 03 2023
CROSSREFS
Sequence in context: A179075 A175916 A231104 * A188911 A364923 A365192
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jul 01 2003
STATUS
approved