This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)

%I

%S 0,1,2,8,24,80,256,832,2688,8704,28160,91136,294912,954368,3088384,

%T 9994240,32342016,104660992,338690048,1096024064,3546808320,

%U 11477712896,37142659072,120196169728,388962975744,1258710630400

%C a(n) / a(n-1) converges to sqrt(5) + 1 as n approaches infinity. sqrt(5) + 1 can also be written as Phi^3 - 1, 2 * Phi, Phi^2 + Phi - 1 and (L(n) / F(n)) + 1, where L(n) is the n-th Lucas number and F(n) is the n-th Fibonacci number as n approaches infinity.

%C Binomial transform is A001076. - _Paul Barry_, Aug 25 2003

%H Karl V. Keller, Jr., <a href="/A085449/b085449.txt">Table of n, a(n) for n = 0..1000</a>

%H F. P. Muga II, <a href="https://www.researchgate.net/publication/267327689">Extending the Golden Ratio and the Binet-de Moivre Formula</a>, March 2014; Preprint on ResearchGate.

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/PellNumber.html">Pell Number</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/LucasNumber.html">Lucas Number</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/LucasSequence.html">Lucas Sequence</a>

%F a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 2, r = 4.

%F From _Paul Barry_, Aug 25 2003: (Start)

%F G.f.: x/(1-2*x-4*x^2).

%F a(n) = sqrt(5)*((1+sqrt(5))^n - (1-sqrt(5))^n)/10.

%F a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k+1)5^k . (End)

%F The signed version 0, 1, -2, ... has a(n)=sqrt(5)((sqrt(5)-1)^n-(-sqrt(5)-1)^n)/10. It is the second inverse binomial transform of A085449. - _Paul Barry_, Aug 25 2003

%F a(n) = 2^(n-1)*Fib(n). - _Paul Barry_, Mar 22 2004

%e a(4) = 24 because a(3) = 8, a(2) = 2, s = 2, r = 4 and (2 * 8) + (4 * 2) = 24.

%p a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*(a[n-1]+2*a[n-2]) od: seq(a[n], n=0..26); # _Zerinvary Lajos_, Mar 17 2008

%t Table[2^(n-1)*Fibonacci[n], {n,0,50}] (* _G. C. Greubel_, Oct 08 2018 *)

%o (PARI) vector(50, n, n--; 2^(n-1)*fibonacci(n)) \\ _G. C. Greubel_, Oct 08 2018

%o (MAGMA) [2^(n-1)*Fibonacci(n): n in [0..50]]; // _G. C. Greubel_, Oct 08 2018

%o (GAP) a:=[0,1];; for n in [3..30] do a[n]:=2*a[n-1]+4*a[n-2]; od; a; # _Muniru A Asiru_, Oct 09 2018

%Y Cf. A024318, A000032, A000129, A001076, A085939.

%Y Essentially the same as A063727.

%K easy,nonn

%O 0,3

%A _Ross La Haye_, Aug 18 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)