%I #8 Jul 10 2018 02:03:19
%S 3,9,63,225,1023,3969,16383,65025,262143,1046529,4194303,16769025,
%T 67108863,268402689,1073741823,4294836225,17179869183,68718952449,
%U 274877906943,1099509530625,4398046511103,17592177655809,70368744177663,281474943156225,1125899906842623
%N Resultant of the polynomial x^n-1 and the Chebyshev polynomial of the second kind U_2(x).
%F a(n) = 4^n - 2^n - (-2)^n + (-1)^n. Proof: Resultant(p, q) = (Leading Coefficient of q)^(Degree of p) * Product(p(i):i roots of q). - Luke Pebody, Oct 12 2004
%o (PARI) a(n)={polresultant(x^n-1, polchebyshev(2, 2, x))} \\ _Andrew Howroyd_, Jul 10 2018
%o (PARI) a(n)={4^n - 2^n - (-2)^n + (-1)^n} \\ _Andrew Howroyd_, Jul 10 2018
%Y Cf. A085903.
%K nonn
%O 1,1
%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 18 2003
%E Terms a(11) and beyond from _Andrew Howroyd_, Jul 10 2018