

A085429


Number of 1's in binary expansion of n is equal to the number of 1's in binary expansion of the reversal of n.


0



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 22, 25, 28, 29, 33, 37, 41, 44, 45, 51, 52, 54, 55, 57, 58, 66, 67, 70, 73, 75, 76, 77, 82, 85, 88, 92, 99, 101, 102, 103, 108, 109, 111, 121, 124, 126, 131, 135, 140, 141, 143, 146, 150, 151, 155, 161, 162, 165, 170, 171, 175, 177
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..64.


EXAMPLE

143 is in the sequence because 143 = '10001111' and 341 = '101010101'; both have five 1's.


MATHEMATICA

dc1Q[n_]:=Module[{rev=FromDigits[Reverse[IntegerDigits[n]]]}, DigitCount[n, 2, 1] ==DigitCount[rev, 2, 1]]; Select[Range[0, 250], dc1Q] (* Harvey P. Dale, Apr 03 2011 *)


CROSSREFS

Cf. A000120, A004086.
Sequence in context: A320320 A263364 A296242 * A202940 A082324 A219955
Adjacent sequences: A085426 A085427 A085428 * A085430 A085431 A085432


KEYWORD

base,easy,nonn


AUTHOR

Jason Earls, Aug 18 2003


STATUS

approved



