This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085420 For each n, let p(n,b) be the smallest prime in the arithmetic progression k*n+b, with k > 0. Then a(n) = max(p(n,b)) with 0 < b < n and gcd(b,n) = 1. 6
 2, 3, 7, 7, 19, 11, 29, 23, 43, 19, 71, 23, 103, 53, 43, 43, 103, 53, 191, 59, 97, 79, 233, 73, 269, 103, 173, 83, 317, 79, 577, 151, 227, 193, 239, 157, 439, 191, 233, 157, 587, 107, 467, 257, 389, 307, 967, 191, 613, 269, 421, 601, 659, 199, 353, 233, 433, 317, 709 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Linnik proved that there are n0 and L such that a(n) < n^L for all n > n0. It has been conjectured that a(n) < n^2. The sequence A034694 has the primes p(n,1). a(n) is also the maximum term in row n of A060940, which defines a(1). A007918(n+1) is the minimum term in row n of A060940. - Seiichi Manyama, Apr 02 2018 REFERENCES P. Ribenboim, The New Book of Prime Number Records, Springer, 1996, pp. 277-284. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 (corrected by Michel Marcus, Jan 19 2019) A. Granville, Least primes in arithmetic progressions, ThÃ©orie des nombres / Number Theory (ed. J. M. De Koninck & C. Levesque), (de Gruyter, New York, 1989), 306-321. Eric Weisstein's World of Mathematics, Linnik's Theorem EXAMPLE a(5) = 19 because p(5,1) = 11, p(5,2) = 7, p(5,3) = 13 and p(5,4) = 19. MATHEMATICA minP[n_, a_] := Module[{k, p}, If[GCD[n, a]>1, p=0, k=1; While[ !PrimeQ[k*n+a], k++ ]; p=k*n+a]; p]; Table[Max[Table[minP[n, i], {i, n-1}]], {n, 2, 100}] PROG (PARI) p(n, b)=while(!isprime(b+=n), ); ba(n)=my(t=p(n, 1)); for(b=2, n-1, if(gcd(n, b)==1, t=max(t, p(n, b)))); t \\ Charles R Greathouse IV, Sep 08 2012 CROSSREFS A038026 is a lower bound. Cf. A034694. Sequence in context: A179894 A060215 A309666 * A027672 A322138 A104138 Adjacent sequences:  A085417 A085418 A085419 * A085421 A085422 A085423 KEYWORD nonn AUTHOR T. D. Noe, Jun 29 2003 EXTENSIONS a(1) defined via A060940 by Seiichi Manyama, Apr 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 14:44 EDT 2019. Contains 328318 sequences. (Running on oeis4.)