login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085361 Decimal expansion of the number c = sum(n=1..infinity, (zeta(n+1)-1)/n). 5
7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The Alladi-Grinstead constant (A085291) is Exp[c-1].

LINKS

Table of n, a(n) for n=0..101.

Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant

Eric Weisstein's World of Mathematics, Convergence Improvement

FORMULA

c = Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]

EXAMPLE

0.7885305659115...

MATHEMATICA

Sum[(-1+Zeta[1+n])/n, {n, Infinity}]

PROG

(PARI) suminf(n=1, (zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012

(Sage)

import mpmath

mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision

mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1, mpmath.inf]) # Peter Luschny, Jul 14 2012

CROSSREFS

Cf. A085291.

Sequence in context: A019861 A065470 A197810 * A244108 A248224 A092290

Adjacent sequences:  A085358 A085359 A085360 * A085362 A085363 A085364

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jun 25, 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 26 01:20 EDT 2014. Contains 248566 sequences.