The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n). 10
 7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The Alladi-Grinstead constant (A085291) is exp(c-1). REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Sofia Kalpazidou, Khintchine's constant for Lüroth representation, Journal of Number Theory,Volume 29, Issue 2, June 1988, Pages 196-205. Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant Eric Weisstein's World of Mathematics, Convergence Improvement FORMULA c = Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links] EXAMPLE 0.78853056591150896106027632345455466647274966822328164975515640230178... MAPLE evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015 MATHEMATICA Sum[(-1+Zeta[1+n])/n, {n, Infinity}] NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *) PROG (PARI) suminf(n=1, (zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012 (Sage) import mpmath mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1, mpmath.inf]) # Peter Luschny, Jul 14 2012 (Sage) numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018 (MAGMA) SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L, n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018 CROSSREFS Cf. A002210, A085291, A244109. Sequence in context: A065470 A338815 A197810 * A256781 A248224 A092290 Adjacent sequences:  A085358 A085359 A085360 * A085362 A085363 A085364 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jun 25 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 06:09 EST 2020. Contains 338833 sequences. (Running on oeis4.)