login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085361 Decimal expansion of the number c = sum(n=1..infinity, (zeta(n+1)-1)/n). 5
7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The Alladi-Grinstead constant (A085291) is Exp[c-1].

LINKS

Table of n, a(n) for n=0..101.

Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant

Eric Weisstein's World of Mathematics, Convergence Improvement

FORMULA

c = Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]

EXAMPLE

0.7885305659115...

MATHEMATICA

Sum[(-1+Zeta[1+n])/n, {n, Infinity}]

PROG

(PARI) suminf(n=1, (zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012

(Sage)

import mpmath

mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision

mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1, mpmath.inf]) # Peter Luschny, Jul 14 2012

CROSSREFS

Cf. A085291.

Sequence in context: A019861 A065470 A197810 * A244108 A248224 A092290

Adjacent sequences:  A085358 A085359 A085360 * A085362 A085363 A085364

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jun 25, 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 20:38 EST 2014. Contains 249919 sequences.