login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085350 Binomial transform of poly-Bernoulli numbers A027649. 8
1, 5, 23, 101, 431, 1805, 7463, 30581, 124511, 504605, 2038103, 8211461, 33022991, 132623405, 532087943, 2133134741, 8546887871, 34230598205, 137051532983, 548593552421, 2195536471151, 8785632669005, 35152991029223 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform is A085351.

a(n) mod 10 = period 4:repeat 1,5,3,1 = A132400. - Paul Curtz, Nov 13 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7, -12).

FORMULA

G.f.: (1-2x)/((1-3x)(1-4x)).

E.g.f.: 2exp(4x) - exp(3x).

a(n) = 2*4^n-3^n.

From Paul Curtz, Nov 13 2009: (Start)

a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3);

a(n) = 4*a(n-1) + 3^(n-1), both like A005061 (note for A005061 dual formula a(n) = 3*a(n-1) + 4^(n-1) = 3*a(n-1) + A000302(n))).

a(n) = 3*a(n-1) + 2^(2n+1) = 3*a(n-1) + A004171(n).

a(n) = A005061(n) + A000302(n).

b(n) = mix(A005061, A085350) = 0,1,1,5,7,23,... = differences of (A167762 = 0,0,1,2,7,14,37,...); b(n) differences = A167784. (End)

MATHEMATICA

LinearRecurrence[{4, 9, -36}, {1, 5, 23}, 30] (* Harvey P. Dale, Nov 30 2011 *)

LinearRecurrence[{7, -12}, {1, 5}, 23] (* Ray Chandler, Aug 03 2015 *)

PROG

(Magma) [2*4^n-3^n: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011

CROSSREFS

a(n-1) = A080643(n)/2 = A081674(n+1) - A081674(n).

Cf. A000244 (3^n).

Sequence in context: A034958 A229008 A274322 * A113443 A124999 A258431

Adjacent sequences: A085347 A085348 A085349 * A085351 A085352 A085353

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jun 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 12:56 EST 2023. Contains 359945 sequences. (Running on oeis4.)