login
Number of distinct 9th powers modulo n.
12

%I #20 Mar 25 2020 06:03:50

%S 1,2,3,3,5,6,3,5,3,10,11,9,5,6,15,9,17,6,3,15,9,22,23,15,21,10,3,9,29,

%T 30,11,17,33,34,15,9,5,6,15,25,41,18,15,33,15,46,47,27,15,42,51,15,53,

%U 6,55,15,9,58,59,45,21,22,9,33,25,66,23,51,69,30,71,15,9,10,63,9,33,30,27

%N Number of distinct 9th powers modulo n.

%C Compare with enigmatic similarity of analogous odd-th power counts to A055653.

%C This sequence is multiplicative [Li]. - Leon P Smith, Apr 16 2005

%H T. D. Noe, <a href="/A085312/b085312.txt">Table of n, a(n) for n = 1..1000</a>

%H S. Li, <a href="http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-aav86i2p113bwm">On the number of elements with maximal order in the multiplicative group modulo n</a>, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1

%p A085312 := proc(m)

%p {seq( modp(b^9,m),b=0..m-1) };

%p nops(%) ;

%p end proc:

%p seq(A085312(m),m=1..100) ; # _R. J. Mathar_, Sep 22 2017

%t a[n_] := Table[PowerMod[i, 9, n], {i, 0, n - 1}] // Union // Length;

%t Array[a, 100] (* _Jean-François Alcover_, Mar 25 2020 *)

%o (PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^9%k), , 8)) \\ _Charles R Greathouse IV_, Sep 05 2013

%Y Cf. A000224[k=2], A046530[k=3], A052273[k=4], A052274[k=5], A052275[k=6], A085310[k=7], A085311[k=8], A085313[k=10], A085314[k=11], A228849[k=12], A055653.

%K nonn,mult

%O 1,2

%A _Labos Elemer_, Jun 27 2003