login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085291 Decimal expansion of Alladi-Grinstead constant exp(c-1), where c is given in A085361. 6
8, 0, 9, 3, 9, 4, 0, 2, 0, 5, 4, 0, 6, 3, 9, 1, 3, 0, 7, 1, 7, 9, 3, 1, 8, 8, 0, 5, 9, 4, 0, 9, 1, 3, 1, 7, 2, 1, 5, 9, 5, 3, 9, 9, 2, 4, 2, 5, 0, 0, 0, 3, 0, 4, 2, 4, 2, 0, 2, 8, 7, 1, 5, 0, 4, 2, 9, 9, 9, 0, 1, 2, 5, 1, 6, 5, 4, 7, 3, 2, 2, 3, 1, 1, 5, 1, 8, 4, 0, 7, 8, 1, 9, 7, 2, 3, 6, 1, 6, 9, 1, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..101.

K. Alladi, C. Grinstead, On the decomposition of n! into prime powers, J. Number Theory 9 (1977), 452-458

Simon Plouffe, Alladi-Grinstead Constant.

Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant

FORMULA

This constant is Exp[c-1], where c is Sum[(-1+Zeta[1+n])/n, {n, Infinity}] (cf. A085361).

EXAMPLE

0.80939402054063913071793188059409131721595399242500030424202871504...

MAPLE

evalf(exp(sum((Zeta(n+1)-1)/n, n=1..infinity)-1), 120); # Vaclav Kotesovec, Dec 11 2015

MATHEMATICA

$MaxExtraPrecision = 256; RealDigits[ Exp[ Sum[ N[(-1 + Zeta[1 + n])/n, 256], {n, 350}] - 1], 10, 111][[1]] (* Robert G. Wilson v, Nov 23 2005 *)

CROSSREFS

Cf. A085288, A085289, A085290, A085361.

Sequence in context: A246772 A198820 A138285 * A109219 A199506 A254178

Adjacent sequences:  A085288 A085289 A085290 * A085292 A085293 A085294

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jun 25 2003

EXTENSIONS

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 02:07 EST 2016. Contains 278902 sequences.