The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085138 Decimal expansion of largest "base 10" Stoneham number. 0
 0, 0, 0, 0, 0, 1, 6, 9, 3, 5, 0, 8, 7, 8, 0, 8, 4, 3, 0, 2, 8, 6, 7, 1, 1, 0, 3, 6, 5, 9, 6, 7, 2, 4, 7, 5, 4, 0, 1, 7, 8, 4, 9, 5, 8, 2, 5, 5, 0, 2, 7, 9, 5, 5, 4, 7, 1, 5, 1, 8, 0, 8, 3, 6, 2, 3, 1, 6, 4, 9, 5, 8, 5, 4, 1, 6, 3, 4, 0, 4, 7, 2, 8, 2, 8, 2, 6, 1, 8, 0, 3, 5, 4, 6, 5, 8, 1, 6, 9, 7, 1, 8, 7, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS David H. Bailey and Richard E. Crandall proved that Stoneham numbers S(b,c)=sum(k>=1,1/b^(c^k)/c^k) are b-normal under the simple condition b,c > 1 and coprime. So the present number is normal in base 10. REFERENCES David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, 2000 R. Stoneham, On the Uniform Epsilon-Distribution of residues Within the Periods of Rational Fractions with Applications to Normal Numbers, Acta Arithmetica 22 (1973), 371-389 LINKS FORMULA S(3, 10)=0.00000169350878084302... MATHEMATICA digits = 99; Clear[s]; s[n_] := s[ n] = (rd = Sum[1/3^(10^k)/10^k, {k, 1, n}] // RealDigits[#, 10, digits]&; Join[Table[0, {Last[-rd]}], First[rd]]); s[1]; s[n=2]; While[s[n] != s[n-1], n++]; s[n] (* Jean-François Alcover, Feb 15 2013 *) PROG (PARI) sum(k=1, 5, 1./3^(10^k)/10^k) CROSSREFS Cf. A085117, A085137. Sequence in context: A072365 A239068 A259833 * A225053 A215483 A153872 Adjacent sequences:  A085135 A085136 A085137 * A085139 A085140 A085141 KEYWORD cons,nonn AUTHOR Benoit Cloitre, Aug 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 08:35 EDT 2020. Contains 336368 sequences. (Running on oeis4.)