login
A085138
Decimal expansion of largest "base 10" Stoneham number.
0
0, 0, 0, 0, 0, 1, 6, 9, 3, 5, 0, 8, 7, 8, 0, 8, 4, 3, 0, 2, 8, 6, 7, 1, 1, 0, 3, 6, 5, 9, 6, 7, 2, 4, 7, 5, 4, 0, 1, 7, 8, 4, 9, 5, 8, 2, 5, 5, 0, 2, 7, 9, 5, 5, 4, 7, 1, 5, 1, 8, 0, 8, 3, 6, 2, 3, 1, 6, 4, 9, 5, 8, 5, 4, 1, 6, 3, 4, 0, 4, 7, 2, 8, 2, 8, 2, 6, 1, 8, 0, 3, 5, 4, 6, 5, 8, 1, 6, 9, 7, 1, 8, 7, 2
OFFSET
0,7
COMMENTS
David H. Bailey and Richard E. Crandall proved that Stoneham numbers S(b,c) = Sum_{k>=1} 1/(b^(c^k)*c^k) are b-normal under the simple condition b,c > 1 and coprime. So the present number is normal in base 10.
LINKS
D. H. Bailey and R. E. Crandall, Random Generators and Normal Numbers, Exper. Math. 11, 527-546, 2002.
FORMULA
S(3, 10) = 0.00000169350878084302...
MATHEMATICA
digits = 99; Clear[s]; s[n_] := s[ n] = (rd = Sum[1/3^(10^k)/10^k, {k, 1, n}] // RealDigits[#, 10, digits]&; Join[Table[0, {Last[-rd]}], First[rd]]); s[1]; s[n=2]; While[s[n] != s[n-1], n++]; s[n] (* Jean-François Alcover, Feb 15 2013 *)
PROG
(PARI) sum(k=1, 5, 1./3^(10^k)/10^k)
CROSSREFS
Sequence in context: A239068 A259833 A367730 * A346176 A225053 A341641
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Aug 10 2003
STATUS
approved