|
|
A085021
|
|
Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.
|
|
11
|
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,11
|
|
COMMENTS
|
The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008
|
|
LINKS
|
Max Alekseyev, Table of n, a(n) for n = 1..1206 (first 500 term from T. D. Noe)
H. Mishima, Factorization of Cyclotomic Numbers
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Eric Weisstein's World of Mathematics, Mobius Transform
|
|
EXAMPLE
|
a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
|
|
MATHEMATICA
|
Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
|
|
PROG
|
(PARI) a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015
|
|
CROSSREFS
|
omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).
Cf. A005420, A019320, A046051, A046801, A059499, A064078, A112927, A212953.
Sequence in context: A329041 A238744 A030421 * A060209 A037830 A174353
Adjacent sequences: A085018 A085019 A085020 * A085022 A085023 A085024
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
T. D. Noe, Jun 19 2003
|
|
STATUS
|
approved
|
|
|
|