This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084969 Multiples of 11 whose GCD's with 210 is 1. 6

%I

%S 11,121,143,187,209,253,319,341,407,451,473,517,583,649,671,737,781,

%T 803,869,913,979,1067,1111,1133,1177,1199,1243,1331,1397,1441,1507,

%U 1529,1573,1639,1661,1727,1793,1837,1859,1903,1969,1991,2057,2101,2123,2167

%N Multiples of 11 whose GCD's with 210 is 1.

%C Fifth row of A083140.

%H <a href="/index/Rec#order_49">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).

%F GCD( 11k, 210) = 1.

%F G.f.: 11*x*(x^48 +10*x^47 +2*x^46 +4*x^45 +2*x^44 +4*x^43 +6*x^42 +2*x^41 +6*x^40 +4*x^39 +2*x^38 +4*x^37 +6*x^36 +6*x^35 +2*x^34 +6*x^33 +4*x^32 +2*x^31 +6*x^30 +4*x^29 +6*x^28 +8*x^27 +4*x^26 +2*x^25 +4*x^24 +2*x^23 +4*x^22 +8*x^21 +6*x^20 +4*x^19 +6*x^18 +2*x^17 +4*x^16 +6*x^15 +2*x^14 +6*x^13 +6*x^12 +4*x^11 +2*x^10 +4*x^9 +6*x^8 +2*x^7 +6*x^6 +4*x^5 +2*x^4 +4*x^3 +2*x^2 +10*x +1) / (x^49 -x^48 -x +1). - _Colin Barker_, Feb 22 2013

%F a(n) = a(n-48) + 2310 = a(n-1) + a(n-48) - a(n-49). - _Charles R Greathouse IV_, Nov 19 2014

%F lim a(n)/n = A038111(5)/A038110(5) = 48.125 as n goes to infinity. - _Vladimir Shevelev_, Jan 20 2015

%t 11Select[ Range[210], GCD[ #, 2*3*5*7] == 1 & ]

%t Select[11*Range[0,200],GCD[#,210]==1&] (* _Harvey P. Dale_, Dec 23 2013 *)

%o (PARI) is(n)=gcd(n,2310)==11 \\ _Charles R Greathouse IV_, Nov 19 2014

%Y Cf. A083140.

%Y Equals 11 * A008364.

%K nonn,easy

%O 1,1

%A _Robert G. Wilson v_, Jun 15 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 02:43 EDT 2019. Contains 322380 sequences. (Running on oeis4.)