The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084949 a(n) = Product_{i=0..n-1} (9*i+2). 13
 1, 2, 22, 440, 12760, 484880, 22789360, 1276204160, 82953270400, 6138542009600, 509498986796800, 46873906785305600, 4734264585315865600, 520769104384745216000, 61971523421784680704000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Israel, Table of n, a(n) for n = 0..329 FORMULA a(n) = A084944(n)/A000142(n)*A000079(n) = 9^n*pochhammer(2/9, n) = 9^n*Gamma(n+2/9)/Gamma(2/9). a(n) = (-7)^n*Sum_{k=0..n} (9/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012 E.g.f.: (1-9*x)^(-2/9). - Robert Israel, Mar 22 2017 D-finite with recurrence: a(n) +(-9*n+7)*a(n-1)=0. - R. J. Mathar, Jan 20 2020 MAPLE a:= n-> product(9*i+2, i=0..n-1); seq(a(j), j=0..20); MATHEMATICA Table[9^n*Pochhammer[2/9, n], {n, 0, 20}] (* G. C. Greubel, Aug 19 2019 *) PROG (PARI) vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019 (MAGMA) [1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019 (Sage) [product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019 (GAP) List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019 CROSSREFS Cf. A000165, A008544, A001813, A047055, A047657, A084947, A084948. Cf. A035012. Sequence in context: A163436 A328158 A266522 * A276454 A137076 A090730 Adjacent sequences:  A084946 A084947 A084948 * A084950 A084951 A084952 KEYWORD easy,nonn AUTHOR Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 11:18 EDT 2020. Contains 333313 sequences. (Running on oeis4.)