This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084937 Smallest number which is coprime to the last two predecessors and has not yet appeared; a(1)=1, a(2)=2. 29
 1, 2, 3, 5, 4, 7, 9, 8, 11, 13, 6, 17, 19, 10, 21, 23, 16, 15, 29, 14, 25, 27, 22, 31, 35, 12, 37, 41, 18, 43, 47, 20, 33, 49, 26, 45, 53, 28, 39, 55, 32, 51, 59, 38, 61, 63, 34, 65, 57, 44, 67, 69, 40, 71, 73, 24, 77, 79, 30, 83, 89, 36, 85, 91, 46, 75, 97, 52, 81 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, this is the lexicographically earliest sequence of positive numbers satisfying the condition that each term is relatively prime to the next two terms. - N. J. A. Sloane, Nov 03 2014 All primes and prime powers occur, and the primes occur in their natural order. For any prime p, p occurs before p^2 before p^3, ... Empirically, this is a permutation of natural numbers, with inverse A084933: a(A084933(n))=A084933(a(n))=n. It seems that there are no further fixed points after {1,2,3,8,33,39}. Empirically, a(n) mod 2 = A011655(n+1); ABS(a(n)-n) < n; a(3*n+1)>n; a(3*n+2) N a[1]:= 1: a[2]:= 2: R:= {\$3..N}: for n from 3 while R <> {} do   success:= false;   for r in R do     if igcd(r, a[n-1]) = 1 and igcd(r, a[n-2])=1 then        a[n]:= r;        R:= R minus {r};        success:= true;        break     fi   od:   if not success then break fi; od: seq(a[i], i = 1 .. n-1); # Robert Israel, Dec 12 2014 MATHEMATICA lst={1, 2, 3}; unused=Range[4, 100]; While[n=Select[unused, CoprimeQ[#, lst[[-1]]] && CoprimeQ[#, lst[[-2]]] &, 1]; n != {}, AppendTo[lst, n[[1]]]; unused=DeleteCases[unused, n[[1]]]]; lst f[s_] := Block[{k = 1, l = Take[s, -2]}, While[ Union[ GCD[k, l]] != {1} || MemberQ[s, k], k++]; Append[s, k]]; Nest[f, {1, 2}, 67] (* Robert G. Wilson v, Jun 26 2011 *) PROG (Haskell) import Data.List (delete) a084937 n = a084937_list !! (n-1) a084937_list = 1 : 2 : f 2 1 [3..] where    f x y zs = g zs where       g (u:us) | gcd y u > 1 || gcd x u > 1 = g us                | otherwise = u : f u x (delete u zs) -- Reinhard Zumkeller, Jan 28 2012 (Python) from fractions import gcd A084937_list, l1, l2, s, b = [1, 2], 2, 1, 3, set() for _ in range(10**3): ....i = s ....while True: ........if not i in b and gcd(i, l1) == 1 and gcd(i, l2) == 1: ............A084937_list.append(i) ............l2, l1 = l1, i ............b.add(i) ............while s in b: ................b.remove(s) ................s += 1 ............break ........i += 1 # Chai Wah Wu, Dec 09 2014 (PARI) taken(k, t=v[k])=for(i=3, k-1, if(v[i]==t, return(1))); 0 step(k, g)=while(gcd(k, g)>1, k++); k first(n)=local(v=vector(n, i, i)); my(nxt=3, t); for(k=3, n, v[k]=step(nxt, t=v[k-1]*v[k-2]); while(taken(k), v[k]=step(v[k]+1, t)); if(v[k]==t, while(taken(k+1, t++), ))); v \\ Charles R Greathouse IV, Aug 26 2016 CROSSREFS Cf. A084933 (inverse), A103683, A121216, A247665, A090252, A249603 (read mod 3), A249680, A249681, A249682, A249683 (trisections), A249694, A011655, A249684 (numbers that take a record number of steps to appear), A249685. Indices of primes: A249602, and of prime powers: A249575. Running counts of missing numbers: A249686, A250099, A250100; A249777, A249856, A249857. Where a(3n)>a(3n+1): A249689. Sequence in context: A118318 A245707 A271861 * A269367 A081994 A249064 Adjacent sequences:  A084934 A084935 A084936 * A084938 A084939 A084940 KEYWORD nonn,look AUTHOR Reinhard Zumkeller, Jun 13 2003 EXTENSIONS Entry revised by N. J. A. Sloane, Nov 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.