OFFSET
0,3
COMMENTS
Binomial transform of A084901. Fourth binomial transform of heptagonal numbers A000566. Fifth binomial transform of (0,1,5,0,0,0,...).
Number of n-permutations of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly two u's. Example: a(2)=15 because we have uuw, uuv, uuz, uux, uuy, uwu, uvu, uzu, uxu, uyu, wuu, vuu, zuu, xuu, yuu. - Zerinvary Lajos, Dec 30 2007
A shifted version of A081135. - R. J. Mathar, Sep 17 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (15,-75,125).
FORMULA
G.f.: x/(1 - 5*x)^3.
E.g.f.: (x/2)*(2 + 5*x)*exp(5*x). - G. C. Greubel, May 17 2021
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3). - Wesley Ivan Hurt, May 17 2021
MATHEMATICA
Table[5^(n-1)n(n+1)/2, {n, 0, 30}] (* or *) LinearRecurrence[{15, -75, 125}, {0, 1, 15}, 30] (* Harvey P. Dale, Sep 18 2018 *)
PROG
(PARI) a(n)=5^(n-1)*n*(n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [5^(n-1)*Binomial(n+1, 2): n in [0..30]]; // G. C. Greubel, May 17 2021
(Sage) [5^(n-1)*binomial(n+1, 2) for n in (0..30)] # G. C. Greubel, May 17 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 10 2003
STATUS
approved