login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084879 Number of (k,m,n)-multiantichains of multisets with k=3 and m=2. 1
1, 3, 18, 189, 2106, 22113, 220158, 2114829, 19853586, 183662073, 1683014598, 15327998469, 139038783066, 1257874611633, 11360039237838, 102475402586109, 923689049088546, 8321664384098793, 74945758272961878, 674816500839877749 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

By a (k,m,n)-multiantichain of multisets we mean an m-multiantichain of k-bounded multisets on an n-set. The elements of a multiantichain could have the multiplicities greater than 1. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.

Index entries for linear recurrences with constant coefficients, signature (18,-99,162).

FORMULA

a(n) = (9^n - 2*6^n + 3*3^n)/2.

G.f.: ( -1 + 15*x - 63*x^2 ) / ( (6*x-1)*(3*x-1)*(9*x-1) ). - R. J. Mathar, Jul 08 2011

E.g.f.: (exp(9*x) - 2*exp(6*x) + 3*exp(3*x))/2. - G. C. Greubel, Oct 08 2017

MATHEMATICA

Table[(9^n - 2*6^n + 3*3^n)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

PROG

(PARI) for(n=0, 50, print1((9^n - 2*6^n + 3*3^n)/2, ", ")) \\ G. C. Greubel, Oct 08 2017

(MAGMA) [(9^n - 2*6^n + 3*3^n)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017

CROSSREFS

Cf. A016269, A047707, A051112-A051118, A084869-A084883.

Sequence in context: A006472 A132853 A259666 * A141118 A033030 A279843

Adjacent sequences:  A084876 A084877 A084878 * A084880 A084881 A084882

KEYWORD

nonn

AUTHOR

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 05:50 EDT 2018. Contains 316519 sequences. (Running on oeis4.)