login
A084878
Number of (k,m,n)-antichains of multisets with k=3 and m=6.
1
0, 0, 0, 15, 1729366, 10340309701, 24380294253318, 36539301527565851, 42407896071362952494, 42091311943805278602897, 37781049596189171124466966, 31727275407315883994852626087
OFFSET
0,4
COMMENTS
By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
FORMULA
a(n) = (1/6!)*(729^n - 30*486^n + 120*378^n + 60*324^n + 60*294^n - 360*279^n - 12*276^n - 720*252^n + 15*243^n + 90*234^n + 720*231^n + 120*216^n + 720*210^n - 240*205^n + 360*196^n - 720*189^n - 180*187^n + 720*186^n - 720*176^n + 120*168^n - 720*167^n + 360*165^n - 300*162^n - 720*157^n + 180*156^n + 720*148^n - 240*145^n + 720*138^n + 30*134^n - 240*129^n + 900*126^n - 360*120^n + 180*111^n + 300*108^n - 20*102^n + 150*98^n - 1800*93^n - 1800*84^n + 85*81^n + 450*78^n + 1800*77^n + 1800*70^n - 1800*63^n + 300*56^n - 1020*54^n + 2040*42^n + 340*36^n - 2040*31^n + 225*27^n + 510*26^n - 1350*18^n + 1350*14^n + 274*9^n - 548*6^n + 120*3^n).
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, Jun 10 2003
STATUS
approved