login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084874 Number of (k,m,n)-antichains of multisets with k=3 and m=2. 1
0, 0, 9, 162, 2025, 21870, 219429, 2112642, 19847025, 183642390, 1682955549, 15327821322, 139038251625, 1257873017310, 11360034454869, 102475388237202, 923689006041825, 8321664254958630, 74945757885541389, 674816499677616282 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

By a (k,m,n)-antichain of multisets we mean an m-antichain of k-bounded multisets on an n-set. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

a(n) is also the number of entries that are divisible by 3 in rows 0 through 3^n-1 of Pascal's triangle A007318. - Tim Cieplowski, Nov 25 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.

Index entries for linear recurrences with constant coefficients, signature (18,-99,162).

FORMULA

a(n) = (1/2!)*(9^n - 2*6^n + 3^n).

G.f.: -9*x^2 / ( (6*x-1)*(3*x-1)*(9*x-1) ). - R. J. Mathar, Jul 08 2011

E.g.f.: (exp(9*x) - 2*exp(6*x) + exp(3*x))/2. - G. C. Greubel, Oct 08 2017

MATHEMATICA

Table[(9^n - 2*6^n + 3^n)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

PROG

(PARI) for(n=0, 50, print1((9^n - 2*6^n + 3^n)/2, ", ")) \\ G. C. Greubel, Oct 08 2017

(MAGMA) [(9^n - 2*6^n + 3^n)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017

CROSSREFS

Cf. A016269, A047707, A051112-A051118, A084869-A084883.

Sequence in context: A133793 A319197 A209962 * A158749 A300843 A133681

Adjacent sequences:  A084871 A084872 A084873 * A084875 A084876 A084877

KEYWORD

nonn

AUTHOR

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 12:04 EDT 2019. Contains 321369 sequences. (Running on oeis4.)