login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084869 Number of 2-multiantichains of an n-set. 16
1, 2, 5, 17, 71, 317, 1415, 6197, 26591, 112157, 466775, 1923077, 7863311, 31972397, 129459335, 522571157, 2104535231, 8460991037, 33972711095, 136277478437, 546270602351, 2188566048077, 8764718254055, 35090241492917 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x = y. - Ross La Haye, Jan 11 2008

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.

Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.

Index entries for linear recurrences with constant coefficients, signature (9,-26,24).

FORMULA

a(n) = (1/2!)*(4^n - 2*3^n + 3*2^n).

a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 11 2008

G.f.: -(13*x^2-7*x+1) / ((2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Nov 27 2012

a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3). - Vaclav Kotesovec, Oct 30 2015

a(n) = 2^(2n-1) + 2^n + 2^(n-1) - 3^n = A000217(2^n+1) - A034472(n), for n >= 1. - Bob Selcoe, Sep 12 2017

MATHEMATICA

Table[2^(2*n-1) - 3^n + 3*2^(n-1), {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2015 *)

PROG

(PARI) a(n) = 2^(2*n-1)-3^n+3*2^(n-1); \\ Altug Alkan, Sep 12 2017

CROSSREFS

Cf. A000079, A000217, A000392, A016269, A032263, A034472, A047707, A051112-A051118, A084870-A084883.

Sequence in context: A139402 A143382 A057219 * A101900 A005966 A082282

Adjacent sequences:  A084866 A084867 A084868 * A084870 A084871 A084872

KEYWORD

nonn,easy

AUTHOR

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 01:06 EDT 2019. Contains 321406 sequences. (Running on oeis4.)