login
A084839
Smallest integers that satisfy sum(n>0, mu(a(n))*log(a(n))/a(n))=-1 by requiring that the absolute values of 1 + the successive partial sums are monotonically decreasing in magnitude, where a(1)=1 and a(n+1)>a(n) for n>0.
1
1, 2, 3, 5, 62, 66, 69, 73, 77, 83, 87, 89, 91, 97, 106, 110, 111, 113, 115, 127, 142, 149, 158, 163, 166, 167, 177, 190, 194, 197, 201, 211, 221, 223, 226, 229, 235, 246, 253, 255, 259, 266, 274, 281, 287, 293, 295, 307, 321, 331, 341, 345, 355, 366, 371, 373
OFFSET
1,2
COMMENTS
Since sum(n>0,mu(n)*log(n)/n)=-1, this sequence gives a subset of integers that satisfy this sum.
PROG
(PARI) S=0; a=0; w=2; for(n=1, 200, b=a+1; while(abs(S+moebius(b)*log(b)/b+1)>=w, b++); S=S+moebius(b)*log(b)/b; w=abs(S+1); a=b; print1(b, ", "))
CROSSREFS
Cf. A084838.
Sequence in context: A083665 A214752 A238201 * A259382 A103110 A042239
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 06 2003
STATUS
approved