OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(0)=1; for n > 0, a(n) = Sum_{j=n-3..n-1} Sum_{i=0..j} a(i)*a(j-i). - Mario Catalani (mario.catalani(AT)unito.it), Jun 19 2003
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x+x^2+x^3 (continued fraction); equivalently g.f. C(x+x^2+x^3) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = Sum_{m=1..n} (Sum_{k=m..n} ((Sum_{j=0..k} binomial(j,n-3*k+2*j) * binomial(k,j))) * binomial(-m+2*k-1,k-1))/k))*m). - Vladimir Kruchinin, May 28 2011
Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + (7*n-11)*a(n-2) + 12*(n-2)*a(n-3) + 2*(4*n-11)*a(n-4) + 2*(2*n-7)*a(n-5). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/sqrt(3)*sqrt(-(1350 + 66*sqrt(131)*sqrt(3))^(2/3) - 48 + 21*(1350 + 66*sqrt(131)*sqrt(3))^(1/3))/((1350 + 66*sqrt(131)*sqrt(3))^(1/6)) * (((190 + 6*sqrt(393))^(2/3) + 28 + 4*(190 + 6*sqrt(393))^(1/3))/(190 + 6*sqrt(393))^(1/3)/3)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
MATHEMATICA
a[n_]:= a[n]= Sum[Sum[a[i]a[j-i], {i, 0, j}], {j, n-3, n-1}]; a[0]=1; Table[a[n], {n, 0, 30}]
Flatten[{1, Table[Sum[Sum[Sum[Binomial[j, n-3*k+2*j]*Binomial[k, j] *Binomial[-m+2*k-1, k-1]/k*m, {j, 0, k}], {k, m, n}], {m, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 17 2013 *)
PROG
(Maxima)
a(n):=sum((sum(((sum(binomial(j, n-3*k+2*j)*binomial(k, j), j, 0, k))* binomial(-m+2*k-1, k-1))/k, k, m, n))*m, m, 1, n); /* Vladimir Kruchinin, May 28 2011 */
(Magma) I:=[1, 1, 3, 10, 35]; [n le 5 select I[n] else (3*(n-2)*Self(n-1) + (7*n-18)*Self(n-2) + 12*(n-3)*Self(n-3) + 2*(4*n-15)*Self(n-4) + 2*(2*n-9)*Self(n-5))/n: n in [1..40]]; // G. C. Greubel, Jun 06 2023
(SageMath)
@CachedFunction
def a(n): # a = A084781
if n==0: return 1
else: return sum( sum( a(k)*a(j-k) for k in range(j+1) ) for j in range(n-3, n) )
[a(n) for n in range(41)] # G. C. Greubel, Jun 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2003
STATUS
approved