login
-3591*zeta_K(-5), where K runs through the simplest cubic fields.
2

%I #11 Mar 25 2021 10:19:54

%S 421401,372237052,24797946347,37916777337111,159408405876911409,

%T 1524411665780115233,79758314837247277491,459985258296743678924,

%U 10707168309538015545757,44491781846495075733473,602111794355444803103621,1993855069179097491346675,18336798043602484502981169

%N -3591*zeta_K(-5), where K runs through the simplest cubic fields.

%H Hyun Kwang Kim and Jung Soo Kim, <a href="http://dx.doi.org/10.1090/S0025-5718-02-01395-9">Evaluation of zeta function of the simplest cubic field at negative odd integers</a>, Math. Comp. 71 (2002), no. 239, 1243-1262.

%Y See A005471 for discriminants. Cf. A084719, A084711.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 03 2003

%E Terms a(4) and beyond from Kim and Kim added by _Andrey Zabolotskiy_, Mar 25 2021