login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084663 a(1) = 8; a(n) = a(n-1) + gcd(a(n-1), n). 22
8, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 177, 180, 181, 182, 189, 190 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The first 150000000 differences are all primes or 1. Is this true in general?

REFERENCES

Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..50000

Eric S. Rowland, A simple prime-generating recurrence.

E. S. Rowland, A natural prime-generating recurrence, JIS 11 (2008) 08.2.8

MAPLE

S := 8; f := proc(n) option remember; global S; if n=1 then S else f(n-1)+igcd(n, f(n-1)); fi; end;

MATHEMATICA

f[n_] := f[n-1] + GCD[n, f[n-1]]; f[1]=8

RecurrenceTable[{a[1]==8, a[n]==a[n-1]+GCD[a[n-1], n]}, a, {n, 70}] (* Harvey P. Dale, Apr 12 2016 *)

PROG

(Haskell)

a084663 n = a084663_list !! (n-1)

a084663_list =

   8 : zipWith (+) a084663_list (zipWith gcd a084663_list [2..])

-- Reinhard Zumkeller, Nov 15 2013

CROSSREFS

Cf. A084662, A106108.

Cf. A230504, A134744 (first differences), A134736.

Sequence in context: A043697 A043624 A043425 * A242857 A031037 A006757

Adjacent sequences:  A084660 A084661 A084662 * A084664 A084665 A084666

KEYWORD

nonn

AUTHOR

Matthew Frank (mfrank(AT)wopr.wolfram.com) on behalf of the 2003 New Kind of Science Summer School, Jul 15 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 15:52 EST 2020. Contains 332078 sequences. (Running on oeis4.)