

A084653


Pseudoprimes whose prime factors do not divide any smaller pseudoprime.


8



341, 1387, 2047, 8321, 13747, 18721, 19951, 31621, 60701, 83333, 88357, 219781, 275887, 422659, 435671, 513629, 514447, 587861, 604117, 653333, 680627, 710533, 722261, 741751, 769757, 916327, 1194649, 1252697, 1293337, 1433407, 1441091
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Here pseudoprime means a Fermat base2 pseudoprime; sequence A001567, a composite number n such that n divides 2^(n1)  1. All numbers in this sequence seem to have only two prime factors  a conjecture that has been tested for all pseudoprimes < 10^15. The two prime factors are given in A084654 and A084655. The two prime factors are the same when the pseudoprime is the square of a Wieferich prime (A001220).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
R. G. E. Pinch, Pseudoprimes and their factors (FTP)
Eric Weisstein's World of Mathematics, Pseudoprime
Index entries for sequences related to pseudoprimes


EXAMPLE

a(2) = 1387 because 1387 = 19*73 and the smaller pseudoprimes (341, 561, 645, 1105) do not have the factors 19 or 73.


CROSSREFS

Cf. A001220, A001567, A084654, A084655.
Sequence in context: A086837 A020230 A087716 * A143688 A086250 A285549
Adjacent sequences: A084650 A084651 A084652 * A084654 A084655 A084656


KEYWORD

nonn


AUTHOR

T. D. Noe, Jun 02 2003


STATUS

approved



