This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084637 Binomial transform of (1,0,1,0,1,0,1,1,1,1,1,....). 3
 1, 1, 2, 4, 8, 16, 32, 65, 136, 293, 642, 1410, 3072, 6606, 14004, 29295, 60592, 124187, 252742, 511672, 1031912, 2075452, 4166408, 8353165, 16732664, 33498977, 67040458, 134134046, 268333872, 536748474, 1073595228, 2147309211, 4294760928, 8589691767 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence starting 1,2,4,... is the binomial transform of (1,1,1,1,1,1,2,2,2...) with a(n) = sum{k=0..5, C(n,k)} + 2*sum{k=6..n, C(n,k)} = 2^n-(n^5-5*n^4+25*n^3+5*n^2+94*n+120)/120. This gives the partial sums of A084636. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (8,-27,50,-55,36,-13,2) FORMULA a(n) = sum{k=0..2, C(n, 2*k)} + sum{k=6..n, C(n, k)}; a(n) = 2^n-n(n^4-10*n^3+55*n^2-110*n+184)/120. G.f.: (1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6) / ((1-x)^6*(1-2*x)). - Colin Barker, Mar 17 2016 PROG (PARI) Vec((1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6)/((1-x)^6*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016 CROSSREFS Cf. A084634, A000325, A000225. Sequence in context: A101333 A023421 A098051 * A100137 A325917 A210542 Adjacent sequences:  A084634 A084635 A084636 * A084638 A084639 A084640 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 05:29 EDT 2019. Contains 328315 sequences. (Running on oeis4.)