login
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 3x^2)^n.
3

%I #15 Mar 03 2017 02:46:14

%S 1,1,1,3,1,2,7,6,9,1,3,12,19,36,27,27,1,4,18,40,91,120,162,108,81,1,5,

%T 25,70,185,331,555,630,675,405,243,1,6,33,110,330,726,1441,2178,2970,

%U 2970,2673,1458,729,1,7,42,161,539,1386,3157,5797,9471,12474,14553

%N Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 3x^2)^n.

%H G. C. Greubel, <a href="/A084602/b084602.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%e Rows:

%e {1},

%e {1,1, 3},

%e {1,2, 7, 6, 9},

%e {1,3,12, 19, 36, 27, 27},

%e {1,4,18, 40, 91,120, 162, 108, 81},

%e {1,5,25, 70,185,331, 555, 630, 675, 405, 243},

%e {1,6,33,110,330,726,1441,2178,2970,2970,2673,1458,729},

%t With[{eq = (1 + x + 3*x^2)}, Flatten[Table[CoefficientList[Expand[eq^n], x], {n, 0, 10}]]] (* _G. C. Greubel_, Mar 02 2017 *)

%o (PARI) for(n=0,15, for(k=0,2*n,t=polcoeff((1+x+3*x^2)^n,k,x); print1(t",")); print(" "))

%Y Cf. A002426, A084600-A084601, A084603-A084615.

%K nonn,tabf

%O 0,4

%A _Paul D. Hanna_, Jun 01 2003