login
A084590
Least positive integers, all distinct, that satisfy Sum_{n>0} 1/a(n)^z = 0, where z is the third nontrivial zero of the Riemann zeta function: z = (1/2 + i*y) with y=25.01085758014568876321379099...
4
1, 3, 4, 7, 38, 56, 64, 72, 80, 89, 99, 110, 123, 138, 154, 171, 189, 208, 228, 249, 271, 295, 322, 352, 384, 418, 454, 493, 534, 577, 622, 669, 719, 771, 825, 881, 939, 1000, 1063, 1129, 1197, 1267, 1340, 1415, 1493, 1574, 1657, 1743, 1831, 1921, 2014, 2109
OFFSET
1,2
COMMENTS
Sequence satisfies Sum_{n>0} 1/a(n)^z = 0 by requiring that the modulus of the successive partial sums are monotonically decreasing in magnitude to zero for the given z.
PROG
(PARI) S=0; w=1; a=0; for(n=1, 100, b=a+1; while(abs(S+exp(-z*log(b)))>w, b++); S=S+exp(-z*log(b)); w=abs(S); a=b; print1(b, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2003
STATUS
approved