%I #5 Mar 30 2012 16:49:44
%S 1,0,0,0,0,1138150,206232780,15909698064,567725836990,9915185041320,
%T 88355709788905,413543821457520,1036378989344140,1406044530294756,
%U 1036378989344140,413543821457520,88355709788905,9915185041320
%N Weight distribution of [104,52,20] binary extended quadratic-residue (or QR) code.
%C Taken from the Tjhai-Tomlinson web site.
%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm">Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a>
%e The weight distribution is:
%e i A_i
%e 0 1
%e 20 1138150
%e 24 206232780
%e 28 15909698064
%e 32 567725836990
%e 36 9915185041320
%e 40 88355709788905
%e 44 413543821457520
%e 48 1036378989344140
%e 52 1406044530294756
%e 56 1036378989344140
%e 60 413543821457520
%e 64 88355709788905
%e 68 9915185041320
%e 72 567725836990
%e 76 15909698064
%e 80 206232780
%e 84 1138150
%e 104 1
%K nonn,fini
%O 0,6
%A _N. J. A. Sloane_, Mar 30 2009