login
Weight distribution of [104,52,20] binary extended quadratic-residue (or QR) code.
0

%I #5 Mar 30 2012 16:49:44

%S 1,0,0,0,0,1138150,206232780,15909698064,567725836990,9915185041320,

%T 88355709788905,413543821457520,1036378989344140,1406044530294756,

%U 1036378989344140,413543821457520,88355709788905,9915185041320

%N Weight distribution of [104,52,20] binary extended quadratic-residue (or QR) code.

%C Taken from the Tjhai-Tomlinson web site.

%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm">Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a>

%e The weight distribution is:

%e i A_i

%e 0 1

%e 20 1138150

%e 24 206232780

%e 28 15909698064

%e 32 567725836990

%e 36 9915185041320

%e 40 88355709788905

%e 44 413543821457520

%e 48 1036378989344140

%e 52 1406044530294756

%e 56 1036378989344140

%e 60 413543821457520

%e 64 88355709788905

%e 68 9915185041320

%e 72 567725836990

%e 76 15909698064

%e 80 206232780

%e 84 1138150

%e 104 1

%K nonn,fini

%O 0,6

%A _N. J. A. Sloane_, Mar 30 2009