This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084519 Number of indecomposable ground-state 3-ball juggling sequences of period n. 7

%I

%S 1,1,3,13,47,173,639,2357,8695,32077,118335,436549,1610471,5941181,

%T 21917583,80856053,298285687,1100404333,4059496479,14975869477,

%U 55247410055,203812962077,751885445295,2773777080149,10232728055191

%N Number of indecomposable ground-state 3-ball juggling sequences of period n.

%C This sequence counts the length n asynchronic site swaps given in A084511/A084512.

%C First differences of A084518. INVERTi transform of A084509. Cf. also A084529, A003319.

%C Equals left border of triangle A145463 [From _Gary W. Adamson_, Oct 11 2008]

%H Fan Chung, Ron Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, Am. Math. Monthly 115 (3) (2008) 185-194

%H <a href="/index/J#Juggling">Index entries for sequences related to juggling</a>

%F a(n) seems to satisfy the recurrence : a(1) = a(2) = 1, a(3) = 3 and a(n) = 3*a(n-1)+2*a(n-2)+2*a(n-3). If so, a(n) = floor(A*B^n+1/2) where B = 3.6890953... is the real positive root of x^3-3x^2-2x-2 = 0 and A = 0.0687059... is the real positive root of 118*x^3+118*x^2+35*x-3 = 0. Benoit Cloitre, Jun 14 2003. [This conjecture is established in the Chung-Graham paper.]

%F G.f.: x*(1-2*x-2*x^2)/(1-3*x-2*x^2-2*x^3). [Colin Barker, Jan 14 2012]

%p INVERTi([seq(A084509(n),n=1..80)]);

%Y A145463 [From _Gary W. Adamson_, Oct 11 2008]

%K nonn

%O 1,3

%A _Antti Karttunen_ Jun 02 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .