

A084435


a(1) = 2, then smallest prime of the form 2^k*a(n1) + 1.


2



2, 3, 7, 29, 59, 1889, 3779, 7559, 4058207223809, 32465657790473, 4462046030502692971872257, 9582170887127842377060195852353537
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence also is generated when the initial term is 1. It is unclear if the sequence is finite or infinite.  Bob Selcoe, Oct 09 2015


REFERENCES

Donald E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, problem 39, page 76.


LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..17


EXAMPLE

a(3)=7 because 3*2+1=7 is prime;
a(4)=29 because 7*2+1=15 is not prime, 7*4+1=29 is prime.


MATHEMATICA

f[s_List] := Block[{k = 0, p = s[[1]]}, While[q = 2^k*p + 1; !PrimeQ[ q], k++]; Append[s, q]]; s = {2}; Nest[f, s, 16] (* Robert G. Wilson v, Mar 11 2015 *)


PROG

(PARI) lista(nn) = {a = 2; print1(a, ", "); for (n=1, nn, k=0; while (!isprime(2^k*a+1), k++); a = 2^k*a+1; print1(a, ", "); ); } \\ Michel Marcus, Mar 18 2015


CROSSREFS

Cf. A113767, A192580.
Sequence in context: A062573 A019435 A061092 * A072469 A004062 A037151
Adjacent sequences: A084432 A084433 A084434 * A084436 A084437 A084438


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Jun 03 2003


STATUS

approved



