login
A084406
Numbers k such that k#*2^k-1 is prime, where k# = product of primes <= k.
1
2, 3, 7, 8, 14, 16, 18, 20, 40, 42, 44, 53, 134, 154, 185, 187, 191, 197, 200, 201, 230, 235, 239, 244, 256, 282, 303, 358, 489, 536, 665, 684, 719, 1098, 1204, 1400, 1516, 1629, 1903, 1997, 1999, 2104, 2477, 3075, 3676, 3785, 4115, 5429, 5808, 6069, 6276, 9095
OFFSET
1,1
COMMENTS
The values corresponding to terms 1098 through 1516 have been proved to be prime.
No more terms < 10000. - L. Joris Perrenet, Mar 18 2020
LINKS
MATHEMATICA
p = 1; Do[If[PrimeQ[n], p *= n]; If[PrimeQ[p*2^n - 1], Print[n]], {n, 2, 10000}] (* Ryan Propper, Sep 05 2005 *)
Select[Table[{k, Times@@Prime[Range[PrimePi[k]]]}, {k, 720}], PrimeQ[#[[2]]2^#[[1]]-1]&][[;; , 1]] (* The program generates the first 33 terms of the sequence. *) (* Harvey P. Dale, Jan 20 2024 *)
CROSSREFS
Cf. A034386.
Sequence in context: A105601 A199971 A033082 * A075648 A071527 A307328
KEYWORD
nonn
AUTHOR
Jason Earls, Jun 24 2003
EXTENSIONS
More terms from Ryan Propper, Sep 05 2005
a(52) from L. Joris Perrenet, Mar 18 2020
STATUS
approved