%I #25 Feb 11 2024 02:39:28
%S 3,2,2,2,2,4,2,3,6,4,5,5,5,10,4,3,5,8,22,13,14,2,5,5,2,20,9,9,24,5,26,
%T 15,14,25,25,4,9,30,9,21,12,11,10,2,40,19,8,13,11,50,3,25,25,8,5,25,
%U 46,19,47,54,9,13,14,43,4,24,28,16,33,25,152,2,11,22,6,78,87,7,10,21,77,23
%N n-th partial product - 1 is a prime, where a(n) > 1.
%C a(n) exists for each n by Dirichlet's theorem. - _Charles R Greathouse IV_, Oct 31 2014
%C Same as A036013 for n > 4. - _Georg Fischer_, Oct 19 2018
%H Amiram Eldar, <a href="/A084402/b084402.txt">Table of n, a(n) for n = 1..586</a> (terms 1..300 from Georg Fischer)
%e 3-1 = 2, 3*2-1 = 5, 3*2*2 -1 = 11, etc. are primes.
%o (PARI) lista(nn) = {v = vector(nn); for (n=1, nn, v[n] = 2; while (! isprime(prod(i=1, n, v[i])-1), v[n]++); print1(v[n], ", "););} \\ _Michel Marcus_, Oct 31 2014
%o (PARI) first(n) = my(res=vector(n), pp=1, t); for(i = 1, n, t = 2; while(!isprime(pp * t - 1), t++); pp *= t; res[i]=t); res \\ _David A. Corneth_, Oct 19 2018
%Y Cf. A036013, A084401.
%K nonn
%O 1,1
%A _Amarnath Murthy_, May 31 2003
%E More terms from _David Wasserman_, Dec 22 2004