login
A084367
a(n) = n*(2*n+1)^2.
2
0, 9, 50, 147, 324, 605, 1014, 1575, 2312, 3249, 4410, 5819, 7500, 9477, 11774, 14415, 17424, 20825, 24642, 28899, 33620, 38829, 44550, 50807, 57624, 65025, 73034, 81675, 90972, 100949, 111630, 123039, 135200, 148137, 161874
OFFSET
0,2
FORMULA
a(n) = n*( n*(2*n+1)+1 + n*(2*n+1)+2 + ... + n*(2*n+1)+2*n ).
a(n) = n*A016754(n); n*a(n) = A014105(n)^2.
G.f.: x*(9+14*x+x^2)/(1-x)^4. - Colin Barker, Jun 30 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
Sum_{n>=1} 1/a(n) = 4 - 2*log(2) - Pi^2/4. - Amiram Eldar, Jul 21 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) + 2*G - 4, where G is Catalan's constant (A006752). - Amiram Eldar, Feb 08 2022
E.g.f.: exp(x)*x*(9 + 16*x + 4*x^2). - Stefano Spezia, Sep 27 2023
EXAMPLE
a(3) = 147 since 147 = 3*7^2.
MATHEMATICA
CoefficientList[Series[x*(9+14*x+x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *)
PROG
(Magma) I:=[0, 9, 50, 147]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Charlie Marion, Jun 22 2003
STATUS
approved