login
A084258
Decimal expansion of Sum_{k>=1} coth(Pi*k)/k^3.
1
1, 2, 0, 5, 7, 9, 9, 6, 4, 8, 6, 7, 8, 3, 2, 6, 3, 4, 0, 1, 5, 7, 4, 1, 2, 2, 5, 2, 6, 0, 9, 4, 9, 8, 7, 0, 2, 3, 0, 8, 7, 6, 1, 2, 2, 2, 0, 0, 6, 6, 4, 3, 0, 7, 6, 9, 9, 4, 5, 0, 9, 8, 1, 5, 1, 4, 8, 0, 2, 6, 4, 6, 9, 0, 1, 2, 5, 5, 5, 2, 3, 4, 7, 9, 4, 2, 6, 0, 5, 9, 5, 7, 1, 2, 3, 3, 4, 4, 6, 3, 0, 6, 2, 2, 8, 2, 5, 2
OFFSET
1,2
COMMENTS
Splitting the infinite sum Simon Plouffe unearthed a rapidly converging series for zeta(3).
REFERENCES
Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, p. 293.
FORMULA
Equals 7*Pi^3/180.
EXAMPLE
1.20579964867832634015741225260949870230876122200664...
MATHEMATICA
RealDigits[7*Pi^3/180, 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)
PROG
(PARI) 7*Pi^3/180
CROSSREFS
Cf. A000796.
Sequence in context: A140571 A078049 A021490 * A171016 A321205 A111352
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Jun 21 2003
STATUS
approved