login
Let a(1) = 1; for n>1, let a(n) be smallest positive integer distinct from all earlier terms such that exp(sum(n>=1,a(n)*x^n/n)) has integer coefficients (cf. A084251).
1

%I #5 Mar 30 2012 18:36:34

%S 1,3,4,7,6,12,8,15,13,18,23,16,14,10,9,31,35,21,20,2,11,25,24,48,56,

%T 42,40,70,30,27,32,63,26,37,83,61,38,22,17,50,124,19,44,29,108,72,95,

%U 64,57,68,89,46,54,102,28,78,80,90,60,71,62,34,146,127,84,100,135,41,96,165

%N Let a(1) = 1; for n>1, let a(n) be smallest positive integer distinct from all earlier terms such that exp(sum(n>=1,a(n)*x^n/n)) has integer coefficients (cf. A084251).

%C A permutation of the natural numbers.

%F Exp(sum(n>=1, a(n)*x^n/n)) = sum(n>=0, A084251(n)*x^n).

%Y Cf. A084251.

%K nonn

%O 1,2

%A _Paul D. Hanna_, May 22 2003. Revised May 29, 2003