This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084249 Triangle T(n,k) read by rows: permutations on 123...n with one abc pattern and no aj pattern with j<=k, n>2, k
 1, 6, 2, 27, 12, 3, 110, 55, 19, 4, 429, 229, 91, 27, 5, 1638, 912, 393, 136, 36, 6, 6188, 3549, 1614, 612, 191, 46, 7, 23256, 13636, 6447, 2601, 897, 257, 57, 8, 87210, 52020, 25332, 10695, 3951, 1260, 335, 69, 9, 326876, 197676, 98532 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS See A228708 for further information. LINKS J. Noonan and D. Zeilberger, [math/9808080] The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns. Also  Adv. in Appl. Math. 17 (1996), no. 4, 381--407. MR1422065 (97j:05003). FORMULA T(n, k) = C(2n-k-1, n) - C(2n-k-1, n+3) + C(2n-2k-2, n-k-4) - C(2n-2k-2, n-k-1) + C(2n-2k-3, n-k-4) - C(2n-2k-3, n-k-2). T(n, n-2) = n-2, T(n, k) = T(n, k+1) + T(n-1, k-1) + T(n-k, 2). EXAMPLE Full triangle begins: 0 0,0 0,0,0 1,1,0,0 6,6,2,0,0 27,27,12,3,0,0 110,110,55,19,4,0,0 429,429,229,91,27,5,0,0 1638,1638,912,393,136,36,6,0,0 6188,6188,3549,1614,612,191,46,7,0,0 23256,23256,13636,6447,2601,897,257,57,8,0,0 ... PROG (PARI) for(n=1, 15, for(k=1, n-2, print1(binomial(2*n-k-1, n)-binomial(2*n-k-1, n+3)+binomial(2*n-2*k-2, n-k-4)-binomial(2*n-2*k-2, n-k-1)+binomial(2*n-2*k-3, n-k-4)-binomial(2*n-2*k-3, n-k-2)", "))) CROSSREFS See A228708 for the full triangle. T(n, 1) = A003517(n+1). Cf. A001089. Sequence in context: A142707 A305874 A176965 * A176591 A191703 A096039 Adjacent sequences:  A084246 A084247 A084248 * A084250 A084251 A084252 KEYWORD nonn,tabl,easy AUTHOR Ralf Stephan, May 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)