|
|
A084247
|
|
a(n) = -a(n-1) + 2a(n-2), a(0)=1, a(1)=2.
|
|
20
|
|
|
1, 2, 0, 4, -4, 12, -20, 44, -84, 172, -340, 684, -1364, 2732, -5460, 10924, -21844, 43692, -87380, 174764, -349524, 699052, -1398100, 2796204, -5592404, 11184812, -22369620, 44739244, -89478484, 178956972, -357913940, 715827884, -1431655764, 2863311532
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row sums of triangle in A112555. [Philippe Deléham, Sep 21 2009]
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-1,2).
|
|
FORMULA
|
Binomial transform of A084246. a(n+1)=A077925(n)+1.
a(n) = 4/3 - (-2)^n/3.
G.f.: (1+3x)/((1-x)(1+2x)).
E.g.f.: (4*exp(x)-exp(-2x))/3.
(-1)^(n+1)*a(n) = A078008(n+1)-A078008(n). [apart from signs the second differences of A001045]. - Paul Curtz, Jun 30 2008, Feb 24 2021
a(n) = -2*a(n-1)+4 . [Philippe Deléham, Sep 15 2009]
a(n+1) = 2*A151575(n). [Philippe Deléham, Sep 21 2009]
a(n) = A077925(n)+3*A077925(n-1). - R. J. Mathar, Feb 24 2021
|
|
MATHEMATICA
|
LinearRecurrence[{-1, 2}, {1, 2}, 40] (* Harvey P. Dale, Nov 05 2016 *)
|
|
PROG
|
(MAGMA) [4/3-(-2)^n/3: n in [0..35]]; // Vincenzo Librandi, Aug 13 2011
(PARI) Vec((1+3*x)/((1-x)*(1+2*x)) + O(x^40)) \\ Michel Marcus, Feb 25 2016
|
|
CROSSREFS
|
Cf. A001045, A077925, A078008, A112555, A151575.
Sequence in context: A195395 A296805 A336974 * A300307 A286606 A266587
Adjacent sequences: A084244 A084245 A084246 * A084248 A084249 A084250
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Paul Barry, May 23 2003
|
|
STATUS
|
approved
|
|
|
|