%I #9 Mar 28 2024 21:54:35
%S 1,1,5,45,553,8525,157481,3383989,82823777,2272771305,69070483549,
%T 2301873355661,83445967372681,3268307044050997,137510640882447041,
%U 6184402325475261525,296032663549928711041,15025296455500536616337
%N First superdiagonal of number array A084061.
%H G. C. Greubel, <a href="/A084095/b084095.txt">Table of n, a(n) for n = 0..300</a>
%F a(n) = ((n - sqrt(n-1))^n + (n + sqrt(n-1))^n)/2.
%p seq( round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2), n=0..20); # _G. C. Greubel_, Jan 11 2020
%t Table[Round[((n+Sqrt[n-1])^n + (n-Sqrt[n-1])^n)/2], {n,0,20}] (* _G. C. Greubel_, Jan 11 2020 *)
%o (PARI) vector(21, n, round(((n-1-sqrt(n-2))^(n-1) + (n-1+sqrt(n-2))^(n-1))/2) ) \\ _G. C. Greubel_, Jan 11 2020
%o (Magma) [Round(((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2): n in [0..20]]; // _G. C. Greubel_, Jan 11 2020
%o (Sage) [round(((n-sqrt(n-1))^n + (n+sqrt(n-1))^n)/2) for n in (0..20)] # _G. C. Greubel_, Jan 11 2020
%o (GAP) List([0..20], n-> ((n-Sqrt(n-1))^n + (n+Sqrt(n-1))^n)/2); # _G. C. Greubel_, Jan 11 2020
%Y Cf. A084061, A084062, A084063, A084064, A084065, A084096.
%K easy,nonn
%O 0,3
%A _Paul Barry_, May 11 2003