

A084088


a(n) = 2 mod 3 and exponent of highest power of 2 dividing a(n) is even.


2



5, 11, 17, 20, 23, 29, 35, 41, 44, 47, 53, 59, 65, 68, 71, 77, 80, 83, 89, 92, 95, 101, 107, 113, 116, 119, 125, 131, 137, 140, 143, 149, 155, 161, 164, 167, 173, 176, 179, 185, 188, 191, 197, 203, 209, 212, 215, 221, 227, 233, 236, 239, 245
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is both in A016789 and A003159.
It seems that lim(n>inf, a(n)/n) = 9/2.
Positions of 1 in expansion of sum(k>=0, x^2^k/(1+x^2^k+x^2^(k+1))) (A084091).


LINKS

Table of n, a(n) for n=1..53.
Index entries for 2automatic sequences.


PROG

(PARI) for(n=0, 300, if(valuation(n, 2)%2==0&&n%3==2, print1(n", ")))


CROSSREFS

Sequence in context: A271982 A179240 A176905 * A314183 A314184 A232010
Adjacent sequences: A084085 A084086 A084087 * A084089 A084090 A084091


KEYWORD

nonn,easy


AUTHOR

Ralf Stephan, May 11 2003


STATUS

approved



