This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084068 a(1) = 1, a(2) = 2; a(2*k) = 2*a(2*k-1) - a(2*k-2), a(2*k+1) = 4*a(2*k) - a(2*k-1). 15
 1, 2, 7, 12, 41, 70, 239, 408, 1393, 2378, 8119, 13860, 47321, 80782, 275807, 470832, 1607521, 2744210, 9369319, 15994428, 54608393, 93222358, 318281039, 543339720, 1855077841, 3166815962, 10812186007, 18457556052, 63018038201, 107578520350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Apart from the first two terms (1, 2) the sequence gives the numbers k which are perfect medians. Namely: if k is even -> Sum_{j=2, 4, 6, .., k-2} {j} = Sum_{j=k+2, k+4, k+6,..k+m} {j} (for some m even); if k is odd -> Sum_{j=1, 3, 5, .., k-2} {j} = Sum_{j=k+2, k+4, k+6,..k+m} {j} (for some m even). See also A001109. - Paolo P. Lava, Jan 28 2008 The upper principal and intermediate convergents to 2^(1/2), beginning with 2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence; essentially, numerators=A143609 and denominators=A084068. - Clark Kimberling, Aug 27 2008 From Peter Bala, Mar 23 2018: (Start) Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have   a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and   a(2*n) = (1/sqrt(2))*(1 o 1 o ... o 1) (2*n terms). Cf. A049629, A108412 and A143608. This is a fourth-order divisibility sequence. Indeed, a(2*n) = U(2*n)/sqrt(2) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ). It appears that this sequence consists of those numbers m such that 2*m^2 = floor( m*sqrt(2) * ceiling(m*sqrt(2)) ). Cf. A084069. (End) REFERENCES Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966. LINKS Indranil Ghosh, Table of n, a(n) for n = 1..2608 Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126. D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448. E. W. Weisstein, MathWorld: Lehmer Number Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1). FORMULA "A Diofloortin equation": n such that 2*n^2=floor(n*sqrt(2)*ceiling(n*sqrt(2))). a(n)*a(n+3) = -2 + a(n+1)*a(n+2). From Paul Barry, Jun 06 2006: (Start) G.f.: x(1+x)^2/(1-6x^2+x^4); a(n) = ((sqrt(2)+1)^n-(sqrt(2)-1)^n)((sqrt(2)/8-1/4)*(-1)^n+sqrt(2)/8+1/4); a(n+1) = Sum_{k=0..floor((n+1)/2)} 2^k*(C(n+1,2k)-C(n,2k+1)*(1-(-1)^n)/2. (End) A000129(n+1) = A079496(n) + a(n). - Gary W. Adamson, Sep 18 2007 Equals A133566 * A000129, where A000129 = the Pell sequence. - Gary W. Adamson, Sep 18 2007 From Peter Bala, Mar 23 2018: (Start) a(2*n + 2) = a(2*n + 1) + sqrt( (1 + a(2*n + 1)^2)/2 ). a(2*n + 1) = 2*a(2*n) + sqrt( (1 + 2*a(2*n)^2) ). More generally, a(2*n+2*m+1) = sqrt(2)*a(2*n) o a(2*m+1), where o is the binary operation defined above, that is, a(2*n+2*m+1) = sqrt(2)*a(2*n)*sqrt(1 + a(2*m+1)^2) + a(2*m+1)*sqrt(1 + 2*a(2*n)^2). sqrt(2)*a(2*(n + m)) = (sqrt(2)*a(2*n)) o (sqrt(2)*a(2*m)), that is, a(2*n+2*m) = a(2*n)*sqrt(1 + 2*a(2*m)^2) + a(2*m)*sqrt(1 + 2*a(2*n)^2). sqrt(1 + 2*a(2*n)^2) = A001541(n). 1 + 2*a(2*n)^2 = A055792(n+1). a(2*n) - a(2*n-1) = A001653(n). (1 + a(2*n+1)^2)/2 = A008844(n). (End) MAPLE a := proc (n) if `mod`(n, 2) = 1 then (1/2)*(sqrt(2) + 1)^n - (1/2)*(sqrt(2) - 1)^n else (1/2)*((sqrt(2) + 1)^n - (sqrt(2) - 1)^n)/sqrt(2) end if; end proc: seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018 MATHEMATICA a[n_] := ((Sqrt+1)^n - (Sqrt-1)^n) ((-1)^n(Sqrt-2) + (Sqrt+2))/8; Table[Simplify[a[n]], {n, 30}] (* after Paul Barry, Peter Luschny, Mar 29 2018 *) PROG (PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 6, 0]^(n-1)*[1; 2; 7; 12])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015 CROSSREFS Bisections are A001542 and A002315. Cf. A084069, A084070, A133566, A079496, A001541, A001653, A008844, A055792, A049629, A108412, A143608. Sequence in context: A092831 A055257 A238366 * A192772 A046243 A230302 Adjacent sequences:  A084065 A084066 A084067 * A084069 A084070 A084071 KEYWORD nonn,easy AUTHOR Benoit Cloitre, May 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:35 EDT 2019. Contains 328103 sequences. (Running on oeis4.)