

A083846


a(n) is the largest prime of the form x^2 + 1 <= 10^n.


3



5, 37, 677, 8837, 98597, 972197, 9985601, 99800101, 999444997, 9999200017, 99986234437, 999920001601, 9999799764517, 99999200001601, 999999202999697, 9999993200001157, 99999979750774757, 999999848000005777
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It is conjectured that the number of primes of the form x^2+1 is infinite and thus this sequence does not become a constant, but this has not been proved. It is easily shown that all terms greater than 5 end in 1 or 7.


REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
P. Ribenboim, The Little Book of Big Primes. SpringerVerlag, 1991, p. 190.


LINKS

Table of n, a(n) for n=1..18.
Eric Weisstein's World of Mathematics, Landau's Problems.


MATHEMATICA

Do[ k = Floor[ Sqrt[ 10^n]  1]; While[ !PrimeQ[k^2 + 1], k ]; Print[k^2 + 1], {n, 1, 19}]


CROSSREFS

Cf. A005574, A002496, A083844, A083845, A083847, A083848, A083849.
Sequence in context: A095957 A121834 A215233 * A180275 A257952 A240186
Adjacent sequences: A083843 A083844 A083845 * A083847 A083848 A083849


KEYWORD

nonn


AUTHOR

Harry J. Smith, May 05 2003


EXTENSIONS

Edited and extended by Robert G. Wilson v, May 08 2003


STATUS

approved



