OFFSET
0,2
COMMENTS
A002533(n)/a(n) converges to sqrt(2/3).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2, 5).
FORMULA
G.f.: 3x/(1-2x-5x^2).
a(n) = 3[(1+sqrt(6))^n-(1-sqrt(6))^n]/(2*sqrt(6)).
a(n) = 3*A002533(n-1) + a(n-1).
G.f.: 1/Q(0) -1, where Q(k) = 1 + 5*x^2 - (3*k+4)*x + x*(3*k+1 - 5*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
MATHEMATICA
CoefficientList[Series[3x/(1-2x-5x^2), {x, 0, 25}], x]
LinearRecurrence[{2, 5}, {0, 3}, 27] (* Arkadiusz Wesolowski, May 21 2013 *)
PROG
(Magma) I:=[0, 3]; [n le 2 select I[n] else 2*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), May 03 2003
STATUS
approved