%I #8 Nov 03 2018 20:50:15
%S 1,2,7,37,266,2963,38785,662308,12622637,290982959,8451128448,
%T 262275964847,9712661827787,398481410904114,17144413330704689,
%U 806185907954024497,42744997534894003030,2522761040466700203267,153931168466003606402317,10315911048262708329158506
%N Denominator of fraction equal to the continued fraction [p(n); p(n-1),...,5,3,2].
%H Alois P. Heinz, <a href="/A083659/b083659.txt">Table of n, a(n) for n = 1..351</a>
%e The 5th term is 266 because 11+1/(7+1/(5+1/(3+1/2))) = 2963/266.
%p b:= proc(n) option remember;
%p `if`(n=1, 0, 1/b(n-1)) + ithprime(n)
%p end:
%p a:= n-> denom(b(n)):
%p seq(a(n), n=1..20); # _Alois P. Heinz_, Nov 03 2018
%t Table[Denominator[FromContinuedFraction[Prime[Range[n, 1, -1]]]], {n, 1, 20}]
%Y Cf. A036247, A036248.
%K easy,frac,nonn
%O 1,2
%A _Hollie L. Buchanan II_, Jun 14 2003
%E One term corrected and extended by _Alois P. Heinz_, Nov 03 2018