login
A083654
Consider the binary Champernowne sequence (A030190): number of successive numbers to be concatenated beginning with A083653(n) such that in binary representation n is contained.
2
1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 4, 2, 3, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2
OFFSET
0,4
COMMENTS
a(2^k)=1, see A083655 for all numbers m with a(m)=1;
EXAMPLE
n=24: '11000'=24 is a suffix of the concatenation of the first 8 numbers: '0'1'10'11'100'101'110'111'1000', therefore a(24)=2 and A083653(24)=7.
CROSSREFS
Sequence in context: A240471 A263569 A105220 * A164878 A319695 A029428
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, May 01 2003
STATUS
approved