The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083648 Decimal expansion of Sum_{n>=1} -(-1)^n/n^n = Integral_{x=0..1} x^x dx. 16
 7, 8, 3, 4, 3, 0, 5, 1, 0, 7, 1, 2, 1, 3, 4, 4, 0, 7, 0, 5, 9, 2, 6, 4, 3, 8, 6, 5, 2, 6, 9, 7, 5, 4, 6, 9, 4, 0, 7, 6, 8, 1, 9, 9, 0, 1, 4, 6, 9, 3, 0, 9, 5, 8, 2, 5, 5, 4, 1, 7, 8, 2, 2, 7, 0, 1, 6, 0, 0, 1, 8, 4, 5, 8, 9, 1, 4, 0, 4, 4, 5, 6, 2, 4, 8, 6, 4, 2, 0, 4, 9, 7, 2, 2, 6, 8, 9, 3, 8, 9, 7, 4, 8, 0, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS In 1697, Johann Bernoulli explores this curve and finds its minimum and the area under the curve from 0 to 1, all this without the benefit of the exponential function. REFERENCES William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, pp. 46-51. Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton, New Jersey: Princeton University Press (1988), p. 146. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363. Eric Weisstein's World of Mathematics, Power Tower. Eric Weisstein's World of Mathematics, Sophomore's Dream. FORMULA Constant also equals the double integral Integral_{y = 0..1} Integral_{x = 0..1} (x*y)^(x*y) dx dy. - Peter Bala, Mar 04 2012 From Petros Hadjicostas, Jun 29 2020: (Start) Equals -Integral_{x=0..1, y=0..1} (x*y)^(x*y)/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to Integral_{x=0..1} x^x dx.) Equals -Integral_{x=0..1} x^x*log(x) dx. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the double integral of Peter Bala above.) Without using the results in Glasser (2019), notice that Integral x^x*(1 + log(x)) dx = x^x + c, which implies Integral_{x=0..1} x^x dx = -Integral_{x=0..1} x^x*log(x) dx. (End) EXAMPLE 0.78343051071213440705926438652697546940768199014693095825541782270... MATHEMATICA RealDigits[ Sum[ -(-1)^n /n^n, {n, 1, 60}], 10, 111] [[1]] (* Robert G. Wilson v, Jan 31 2005 *) PROG (PARI) -sumalt(n=1, (-1/n)^(n)) \\ Michel Marcus, Oct 15 2015 (Sage) numerical_approx(-sum((-1/n)^n for n in (1..120)), digits=130) # G. C. Greubel, Mar 01 2019 CROSSREFS Cf. A137420 (continued fraction expansion). Cf. A073009. The minimum point on the curve x^x is (A068985, A072364). Sequence in context: A064207 A020843 A241296 * A133613 A296140 A194622 Adjacent sequences:  A083645 A083646 A083647 * A083649 A083650 A083651 KEYWORD cons,nonn AUTHOR Eric W. Weisstein, May 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 05:01 EDT 2020. Contains 337950 sequences. (Running on oeis4.)