This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083594 (7-4(-2)^n)/3. 1
 1, 5, -3, 13, -19, 45, -83, 173, -339, 685, -1363, 2733, -5459, 10925, -21843, 43693, -87379, 174765, -349523, 699053, -1398099, 2796205, -5592403, 11184813, -22369619, 44739245, -89478483, 178956973, -357913939, 715827885, -1431655763, 2863311533, -5726623059 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also generalized k-bonacci sequence a(n)=2*a(n-2)-a(n-1). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007 The k-bonacci sequences are constructed using the formula a(n+k)=sum({i=1 to k-1) a(n+i) where integers a(0) to a(k-1) are given. The generalized k-bonnacci sequences are built with the formula a(n+k) =sum({i=1 to k-1}p(i)* a(n+i)), where integer coefficients p(1) to p(k-1) and integers a(0) to a(k-1) are given . The terms of such a sequence may be calculated by a formula such as: a(n>=k) = sum ({i =0 to k-1} q(i) * r(i)^n) where r(0) to r(k-1) are the roots (real or complex) of the equation x^k= sum {i=0 to i=k-1}p(i)x^i) The coefficients q(i) (real or complex) may be calculated by the system of equations: {for p=0 to k-1} sum( {(i=0 to k-1} q(i)*r(i)^p)=a(p), first given terms of the sequence For this sequence, the roots of x^2=2*x-1 are 1 and -2 The system of equations for q(0) and q(1) is q(0)+ q(1) = 1 q(0)-2*q(1)= 5 which gives q(0)=7/3 and q(1)= -4/3 and then the first proposed formula. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007 LINKS Index entries for linear recurrences with constant coefficients, signature (-1,2). FORMULA G.f. (1+6*x)/((1-x)*(1+2*x)). E.g.f. (7*exp(x)-4*exp(-2*x))/3. MATHEMATICA (7-4(-2)^Range[0, 40])/3 (* or *) LinearRecurrence[{-1, 2}, {1, 5}, 40] (* Harvey P. Dale, Feb 25 2012 *) CROSSREFS Cf. A083595. Sequence in context: A085910 A093544 A082983 * A178497 A213750 A213774 Adjacent sequences:  A083591 A083592 A083593 * A083595 A083596 A083597 KEYWORD easy,sign AUTHOR Paul Barry, May 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.