login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083579 Generalized Jacobsthal numbers. 6
0, 1, 1, 4, 8, 19, 39, 82, 166, 337, 677, 1360, 2724, 5455, 10915, 21838, 43682, 87373, 174753, 349516, 699040, 1398091, 2796191, 5592394, 11184798, 22369609, 44739229, 89478472, 178956956, 357913927, 715827867, 1431655750, 2863311514 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).

FORMULA

a(n) = (2^(n+3) - 5*(-1)^n - 3*(2*n+1))/12.

a(n+2) = a(n+1) + 2*a(n) + n, a(0)=0, a(1)=1.

G.f.: x*(1 - 2*x + 2*x^2)/(1 - 3*x + x^2 + 3*x^3 - 2*x^4). - Colin Barker, Jan 16 2012

MATHEMATICA

LinearRecurrence[{3, -1, -3, 2}, {0, 1, 1, 4}, 40] (* G. C. Greubel, May 25 2019 *)

PROG

(PARI) concat(0, Vec(x*(1-2*x+2*x^2)/(1-3*x+x^2+3*x^3-2*x^4) + O(x^40))) \\ G. C. Greubel, May 25 2019

(MAGMA) I:=[0, 1, 1, 4]; [n le 4 select I[n] else 3*Self(n-1)-Self(n-2) - 3*Self(n-3)+2*Self(n-4): n in [1..40]]; // G. C. Greubel, May 25 2019

(Sage) (x*(1-2*x+2*x^2)/(1-3*x+x^2+3*x^3-2*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019

(GAP) a:=[0, 1, 1, 4];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-3*a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, May 24 2019

CROSSREFS

Cf. A083580.

Sequence in context: A163318 A129362 A301981 * A335714 A215112 A265108

Adjacent sequences:  A083576 A083577 A083578 * A083580 A083581 A083582

KEYWORD

nonn,easy

AUTHOR

Paul Barry, May 01 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:51 EST 2020. Contains 338947 sequences. (Running on oeis4.)