login
A083546
The geometric mean of the Euler totient function of 2 consecutive integers {k, k+1} when it is an integer.
4
1, 2, 8, 12, 48, 48, 60, 80, 96, 128, 144, 180, 280, 240, 240, 288, 288, 288, 336, 288, 384, 360, 480, 480, 640, 720, 672, 600, 576, 720, 720, 720, 672, 864, 960, 864, 960, 1080, 1008, 1408, 1296, 960, 1008, 1320, 1260, 1056, 1440, 1200, 1728, 1440, 1296
OFFSET
1,2
LINKS
FORMULA
a(n) = sqrt(A000010(x) * A000010(x+1)) = sqrt(phi(x) * phi(x+1)) = sqrt(A083542(x)) where x = A083545(n).
EXAMPLE
12 is a term since sqrt(phi(19) * phi(20)) = sqrt(18 * 8) = sqrt(144) = 12.
MATHEMATICA
f[x_] := EulerPhi[x]; Do[s=Sqrt[f[n+1]*f[n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]
Select[Sqrt[#]&/@(Times@@@Partition[EulerPhi[Range[3000]], 2, 1]), IntegerQ] (* Harvey P. Dale, Nov 04 2020 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, May 21 2003
STATUS
approved