OFFSET
1,4
COMMENTS
Sum(T(n,k): 1<=k<=n) = A038107(n); T(n,1)=A000720(n); T(n,2)=A060715(n) for n>1. - Reinhard Zumkeller, Jan 07 2004
REFERENCES
Paulo Ribenboim, "The Little Book Of Big Primes," Springer-Verlag, NY 1991, page 185.
LINKS
T. D. Noe, Rows n=1..100 of triangle, flattened
EXAMPLE
{0}
{1, 1}
{2, 1, 1} from / 1 2 3 / 4 5 6 / 7 8 9 /
{2, 2, 1, 1}
{3, 1, 2, 2, 1}
{3, 2, 2, 2, 1, 1}
MATHEMATICA
Table[PrimePi[m n]-PrimePi[(m-1) n], {n, 17}, {m, n}]
PROG
(Haskell)
a083415 n k = a083415_row n !! (k-1)
a083415_row n = f n a010051_list where
f 0 _ = []
f k chips = (sum chin) : f (k - 1) chips' where
(chin, chips') = splitAt n chips
a083415_tabl = map a083415_row [1..]
-- Reinhard Zumkeller, Jun 10 2012
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, following a suggestion of Wouter Meeussen, Jun 10 2003
STATUS
approved